
996 M. N. Kogan and V. V. Mikhailov 

4, Sedov, L. I., The motion of air in strong explosions. Dokl. Akad. Nauk SSSR, 
Vol.52, Npl, 1964, 

5. Sedov, L.I., Similarity and Dimensional Methods in Mechanics. Moscow, 

“Nauka”, 1967. 

6. Sychev, V. V., On the theory of hypersonic gas flows with power-law shock 

waves. PMM Vol.24, Ns3, 1960. 

7. Sychev, V. V. t On the method of small perturbations in problems of hypersonic 

flow of gas past blunted slender bodies. PMTF, Ns6, 1962. 

8. Yakura, J., The theory of entropy layers and nose bluntness in hypersonic flows. 
Collection : Investigation of Hypersonic Flows. “Mir”, Moscow, 1964, 

9. Ryzhov, 0. S. and Terent’ev, E. D., Applying the explosion analogy to the 

calculation of hypersonic flows. PMM Vol. 33, Ng4, 1969. 

10. Ryzhov, 0. C. and Terent’ev, E. D., On the entropy layer in hypersonic 
flows with shock waves whose shape is described by a power function, PMM Vol. 
34, Np3, 1970. 

Translated by J. J. D. 

PARTICULAR STREAM SURFACES IN CONICAL GAS FLOWS 
PMM Vol. 34, Ng6, 1970, pp. 1058-1066 

A. I. GOLLJBINSKII 

(Receive(d”i$$w 3, 1 1970) 

Considering the field of conical flow of an ideal perfect gas near conical stream surfaces, 

we show that ordinary (regular) stream surfaces which are constant-entropy surfaces 
(isentropes) can coexist with particular stream surfaces characterized by distributed vari- 
able entropy. These particular surfaces are envelopes of the field-of-flow isentropes 
and can be contiguo~ with the regular stream surfaces without disrupting the continui~ 

of the stream surface either in the vicinity of the particular stream surface or in the 
vicinity where the two surfaces meet. The results obtained enable us to postulate a pat- 

tern of nonsymmettic flow past conical bodies with a continuous and unique distribution 
of gasdynamic parameters in the field of flow, and to infer that this pattern is free of 

singular points Cl]. 

1, Let us consider the flow of an ideal perfect gas conically symmetric with its cen- 
ter at the point 0 ; we assume that the field of flow contains a conical stream surface 
S on which the normal component of the flow velocity is equal to zero by definition. 

The stream surface S is represented by the curve s on the sphere of unit radius with its 

center at 0 (Fig, 1). We assume that in the curvilinear coordinate system 9, 5 the stream 
surface $I corresponds to q = 0 and the lines 5 = con.% correspond to the normals 
to I!?. In such coordinates the equations of gas motion are, for example p], of the form 

WU% + xvufi - x (ws + v”) = 0 

wvr + xvu, + xuv + yw= = - p-l xp fj (1.1) 
wwc + xvw, + x,,- Yvw = - p-1 pr, 

W& + vxp, + p (wi; + xv, + 2xu - Yv)= 0 
2x fx - 1)-’ p + p fu” + v2 + w2) = P~zrrKix 
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where u, u, w are the components of the velocity vector along the radius r and along 
the coordinates 7, [, respectively ; Vmax is constant throughout the stream ; p, p, x 

are the pressure, density, and ratio of specific heats of the gas. respectively, and k (5) is 

the curvature of 8. Equations (1.1) also contain the symbols 

X = cosq - ksinq, Y = sin 1 + k cos q (1.2) 

We begin by considering stream surfaces sn near which all of the flow parameters 
are continuous, have continuous derivatives of arbitrary order with respect to q , and can 
be expressed as expansions in integer powers of rl which converge in some neighborhood 

of SR. We shall refer to such stream surfaces Sn as “regular”. stream surfaces So not 
satisfying this condition will be called “particular”. 

As we shall see below. the stream surface S can consist partly of SR and partly of So. 
Expressing the flow parameters as series in tl near SR and recalling that u = 0 on 

SR, we have 
u = no (5) + rlu1 (5) + --*v P = PO (5) + rlPl(C) + *a- (1.3) 

2.J = rln1 (5) + r12uz (5) + ***7 w = wg (t;) + rlw, (5) -I- *.* 

p = PO (5) + Wl (0 + -** 

Substituting these expansions into (1. l), we obtain recursion relations for the series 
coefficients. The first equation of (1.1) indicates that one of two cases is possible : 
either w. = uo’ or w. = 0. In the first case the principal terms of the third and fifth 
equations coincide if the entropy function CT = pp-x is constant on S (the case of vari- 
able entropy must be rejected because of the incompatibility of the principal terms of 

these equations). The recursion relations for the series coefficients therefore contain the 
function u. (c), which can be defined in arbitrary fashion, 

w = uor + o (71, p = + po (vta, - u.02 - uo’*) - v’vouo” + 0 (q2) 

Thus, the first case corresponds to a conical stream surface SRI which coincides with 

the equal-entropy surface (isentrope) ; the isentropes of the field of flow near SRI are 
parallel to the latter (Fig, 2a). 

Fig. 1 Fig. 2 

The second case w. = 0 is interesting in that it constitutes an example of a conical 

stream surface Sns on which the entropy can vary. In this case the relations for the 
series coefficients contain the single arbitrary function u. (c) and are of the form 
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Ul = 0, u2 =- 110 - ~/!4u*‘zvf41&J-~ (V”,,, - uoy, . . . , u1 = - 2u,, . . .) 

w1 L= 0, I-L’? = - ~$LO’V& (Vi,, - uoy, . , . ) p. = const = po*, p1 I= 0 

pa = - $0Ug2, . , * , fto = &p,, (31- 1)-l (V”,,, - uoy ) . . . (1.5) 

In the coordinate system 7f, 5 the slope of the equal-entropy curves is given by 

dqld< = vX/w (1.61 

Prom this we see that dvldf -+ ?o as 7 -+ 0, i.e. the isentropes approach the surface 
Sna along the normals (Fig.Ab). and the pressure at this surface is constant. The case 
u. Z const corresponds to flow with constant entropy. 

We note that the surfaces SR1 and sRz cannot adjoin each other continuously. This 

is because of the diametrically oposite directions of the isentropes, which require the 
existence either of corner points or of isolated singular points in the field of flow. 

Stream surfaces (isentropes) are widely used for constructing the field of flow past 

conical bodies. For example, the authors of studies on nonsymmetric flow past cones 
Cl-41 and delta wings [5. 1;] assume that the entropy is constant everywhere on the body 
surface except at certain isolated points of entropy discontinuity [I]. 

2. NOW let us investigate the possibility of existence of particular conical stream sur- 
faces So. We can express the flow parameters in the neighborhood of So in the form 
of the following expansions which ensure the continuity of the flow parameters as So is 
approached. although their first (or higher) normal derivatives may go to infinity : 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

P =: PO (5) + Wl (5) + -** + qm I&" (5) -t q& (5) -t . ..I 

(0 < m < 1) 

Substituting (2.1) into (l.l), we find that it is possible to construct series for n& = i 2 

with noncontradictory recursion relations. To simplify the derivation of these relations, 

instead of applying (‘2. l),we first set z = vq in Eqs. (1.1) and then substitute into 
them the expansions of the functions in series in integer powers of Z. 

U 2 UR* (5) + ru** (5) + . . . . U = zui* (5) + zsu2* (5) $- . . . (2.2) 
. 1.1 - . . . .I * . . * * . . . . . * . . . . .._ 

P = PO* 15) + m* (5) + *I. 

It is clear that the two above procedures are equivalent for m = ‘!a . 

The second and fourth equations of system (1.1) require that Vi* = 0, pl* = i3 ; 
the first equation points to the existence of two cases: either tzo* = ~s*‘or wo* = 0. 
The first case correspondstoaconstant entropy on soi (this follows from the third and 
fifth equations), and the coefficients of the expansion are given by recursion relations 
containing the single arbitrary function uo* (5). Thus. the surface so1 is an isentrope. 

and the character flow in the vicinity of this surface is qualitatively the same as in the 
case of Snt. 

We note that noncontradictory expansions with other fractional values of the exponent 
LC can exist in the neighborhood of Soi . 
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The most interesting stream surfaces are so2 which correspond to the second case 
u,J~* = 0 since the entropy on these surfaces turns out to be variable. The coefficients 7 
of the expansions generally contain the two arbitrary functions us* (5) and ur* (5)) 
i. e. they are somewhat more arbitrary than the expansions near the isentropes, and the 

expansions are noncontradictory for m == ‘tz only, 

U = u0* (5) + $$* + 0 (q), u -: - 2Wo* (5) + 0 (-$“) 

w Yzz ~]‘I’uO*ul* / &)*I + 0 (rl), p = 2x PO0 (x - 1)-l (V,,,2-u()“)-1 + . . 

p = poo - po q2 [u,*2 + ‘l,k (uf)*ul* / u,*‘)“l +... (2.3) 

The pressure poo at the surface So2 is constant, while the density F, and therefore 

the entropy, are variable. The velocity w of transverse flow vanishes on So2 ; the velo- 

city u tends to finite values; the normal derivatives of the velocities u, w and of the 

densiry p go to infinity as rl-‘l? with diminishing distance from the stream surface, 

although the pressure gradient and its derivative are continuous. let us consider the pat- 
tern of isentropes in the vicinity of So2., Substituting the principal terms of (2.3) into 

Eq. (1.6). we obtain the following equation vi = qi ( j, (3) for the isentropes near so,: 

vi = (Ci - 5 ug *’ / ul*y -t 0 (q”‘;) (2.4) 

where Ci is constant along each isentrope. 

Overlooking the degenerate case u. = con&, we can now readily verify that from 
every point 5” belonging to So2 there emerges a single isentrope with the corresponding 

entropy value (Fig. 3). The isentropes near so2 are parabolas tangent to So2 at the 

points 7& qi C2Z (uo*’ / ut*Y.(G - 5oJ2 (2.5) 

The surface So2 is thus the envelope of the family of isentropes. 

The fact that the velocity components u and w vanish at the stream surface So2 :llso 
imply that the streamlines of the field of flow asymptotically approach the radial gene- 

ratrices of the stream surface So2. 

Thus, a conical flow can contain conical stream surfaces over which the entropy varies. 
Moreover, the series expansions of the flow parameters which permit departure from these 

surfaces are highly arbitrary (they contain two arbitrary functions). 
This fact suggests that such special stream surfaces are in no way exceptional, and can 

occur in flows past conical bodies of varying configuration. It is, of course, generally 
impossible for the entire surface of a streamlined body to be contiguous with the parti- 
cular stream surface So, exclusively (although exceptions to this general rule appear to 

be possible). It is therefore important to investigate the possibility of continuous conti- 
guity of a regular and a particular stream surface. 

Fig. 3 Fig. 4 
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3, Let us consider a portion of a sufficiently smooth conical stream surface S and 
suppose that at the point a,with the coordinate 5 = 5, the particular and regular stream 

surfaces come in contact; the surface soZ lies to the left of 0, and Sn, to its right 
(Fig. 4). We shall show that the flow pattern in the vicinity of the point 0, can be as 

follows : isentropes emerge from So a ; the curvature of these isentropes gradually decrea- 

ses to zero as the point 0, is approached from the left; the limiting isentrope emerges 

from 0, along the axis rl -= 0. Series of the form (2.2) are not suitable for describing 

the flow in the vicinity of the point 0,. In fact, (2.5) implies that as 5 --f & the quan- 
tity uo*‘ J U1* must tend to zero. However, this requires, for example, that the coeffi- 

cients of the expansion for (2.3) go to infinity. This flow zone requires the use of power 

expansions in other variables which can be extended to the left and to the right of the 
point 0, for matching with series (1.3) and (2.2). To this end we introduce the variables 

(Fig. 4) 
2 = I/, [ 5 - 51 + 1/c 5 - 5,)” + 4 63 

‘II, = - l,‘:! I5 -- 51 - vcgjg,,” + 4JGyl (3.1) 

The inverse transition (for v > 0) can be effected by means of the formulas 

5 = 51 + Z i- $, q = &#z (3.2) 
The Curves $ = const are parabolas tangent to the axis ‘11 0; the quantity $ as 

well as the curvature of the parabolas tend to zero as the points of tangency approach 

01, so that the last parabola ‘llj = 0 coincides with the line 11 = 0 , 5 >, 5,. The 
variable z constitutes the projection on the axis q = 0 of the distance from the point 

(z, $) under consideration to the origin of the corresponding parabola. It turns out that 

in these variables system of gasdynamic equations (1.1) has solutions which satisfy the 

no-leak condition at S ; these solutions take the form of the following power series: 

L( zz u()** ($> + %** NJ + *‘-T P = PO0 + zp1** ($) + . . . (3.3) 
Equations (1.1) rewritten in the variables Z, ‘$ are 

D (U) - x22* ($ + Z) (20” + U”) = 0 (3.4) 
D (u) + 2qJ (q + 2) (Xuu + Yw2) = P-lx (Pz + pd 

D b) + w (2 -I- 9) (X uw - Yvw) = 2*/p-’ (zpz - $pq) 

D (P) + 2fm (zw, -4w) + XP (UZS VIL) + 
+ 2 PqJ (9 + 2) (2 xu - Yu) = 0 

p 2x (x - 1)-l + p (u” + v2 + w”) - p v2,,, = 0 

D(*)E(2221)W+Xv) a (.)/az+(xv-222~2w) a (.)/a+ 

Substituting (3.3) into this system, we find that the fourth equation yields v1 = 0 and 

the second equation requires p1 = p2 = p3 = 0. Under these conditions we obtain 
noncontradictory recursion relations of the coefficients of series(3.3); as is the case with 
(2.2), these relations contain the two arbitrary functions uO** (9) and ul** ($). The 

principal terms of the expansions are of the form 
U = zbO** + zlL1** + . . . , v = - 2zyPuo** + . . . 

w=-- % *t [ (uo**)’ + u1**1 + . . . (Q**)’ 

p = poo -- z*po ($4 (/Lo**)? + l/&l’ =$ [(LAO**)’ + u1**]2} + . . . (3.5) 
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p = PO -/- 0 (2) = 2p,,x (x - q-1 [V&a, - (u@**)2]-1 + * . . 
poo = const 

Hence, under certain conditions imposed on the functions u,-,** (9) and ur** (9) in 
order to ensure the convergence of the power series the indicated flow pattern in the 

neighborhood of 0, is indeed possible ; moreover, the solutions to the left of the point 0, 
take the form of series in z which can be reconstructed into series in fi with princi- 

pal terms of the form (2.2). In fact, the variables z, J, for 5 < c1 and for q < ( 5 - 

- 5,)” (near q = 0, but far away from the point 0,) can be written as 

To the right of the point 0, near 7 = 0 we have 

and the principal terms of series (3.5) assume a form corresponding to (1.3). 
Thus, the fact of existence of noncontradictory expansions of the solution into power 

series in the hypothetical flow pattern in the vicinity of joining of the regular and par- 

ticular stream surfaces points to the possibility of such flows, although a complete proof 

of the existence of the solution requires the imposition of conditions on the arbitrary 
functions to ensure the convergence of the solutions employed. 

4, If a flow is symme~ic relative to some plane p = 0, then the derivative 
itu / a 5 -+ 0 as 5; -+ 0 on the particular stream surface Sos . Hence. other expansions 

are required in the neighborhood of the point 5 = 0 of the particular stream surface 

Son, since expansions (2.3) lack meaning there. 

We were able in this case to construct the solution in the spherical coordinate system 
r, 8, v with the axis Q = 0 passing through c = 0 (Fig. 5). As we know, Eqs. (1.1) 

Fig. 5 Fig. 6 

can be written in this coordinate system as 

q sin 0~; + wu, - q2 sin 8 - w2 sin 0 = 0 (4.1) 
q sin Bq0 + wqy, + qt.4 sin 8 - ws cos 0 = - p-l sin 0pg 

q sin Buts + wu, + uw sin 0 + qw co8 0 = - p-‘pP 

q sin Bpe + wpIp + p (2~ sin 8 + sin Bq, + q cos 8 f ah+} = 0 

2px (x - j)-’ + P (u” + 4” + w”) = P V2max 

where u1 q, w are the components of the velocity vector which correspond to the 

directions of variation of r, 8, rp. 
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Let the stream surface S be defined by the series 

9 = u&I + a$32 + (I.. for cp < ‘I.$, rp =: n - a,8 - a&P.. . 

(9 > G-0 

(4.2) 

With allowance for symmetry and for the no-leak condition at S I we can express the 

flow parameters in (4.1) as the expansions 

u = U”O (9) + flUI (rp) + se*, Q = %I,0 (rp) + @a0 (cp) -t . . . (4.3) 

w = 0~ (CP) + ez+ (CP) + . . . . P = poo + 8~~0 (9) + . . . 

P = PO0 (9) + UP,0 (cp) + *'* 

Several authors, e. g. those of p‘, 81, have investigated conical flows in the neighbor- 
hood of the point of symmetry 0, with the aid of such expansions. 

The first equation yields (~~~‘~~ = 0 (4.4) 
The case (uoO)’ i_ 0, wIo = 0 requires the existence of a singular point in the 

entropy and density distributions (called the “Ferri [l] entropy singularity’ in several 

papers), In this case, which is investigated in detail in the aforementioned papers, the 

isentropes converge to the point Os, so that the case corresponds to the regular stream 

surface Sn (or So,). 

Let us consider the case (no’)’ = 0, w,” # 0, which, as aiready noted, also yields 

noncontradictory recursion formulas for the coefficients of series (4.2). For the first 

terms of the expansion we obtain 

qloulo -+_ wl*ulo’ zz_ 0 q102 + WlOQlO’ t lJ0°910 = - $ pz” (4.5) 

glowlo + WlOW10 + u;w; = - p20’lpo0 

qlQ zr: - VZW1@ - uoo, PO0 =z c,onst, uoo = const 

This system reduces to the following nonlinear differential equation for wrO: 

WI0 (WIO” + 4w;‘) - z&go (WIOR + 4wT) = 0 (4.6) 

As can be verified directly, this equation has the following two-parameter family of 

periodic solutions : WI0 zz. A sin 2cp + 3 Cos 2rp (4.7) 
where A and B are arbitrary constants. 

Taking account of the no-leak condition at S (woo = 0 for v = 0 and q := n;) 

and also of the symmetry condition (woo = 0 for cp = R / 21, we obtain the following 
formulas for the first coefficients of series (4.3): 

WI0 c= A sin29, 41 
a_ - ---A co.5 29 - uoO (4.8) 

For the remaining coefficients we obtain a system of linear differential recursion equa- 
tions with the appropriate boundary conditions. 

Let us consider the limiting form of the isentropes, Their equation can be written as 

dt3 
yy=T ql”dP [I -+ o(e)J (G.9) 

Substituting (4.8) and integrating, we obtain the equation of the isentropes 

(4.40) 
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Alternatively, converting to the coordinates q, 5 by means of the formulas 

5 zz 0 cos rp, Tl z5 8 sin cp + 0 (CP) 

and altering our symbol for the integration constant, which depends on the magnitude of 

the entropy function o , we obtain 
tJ = Cr (3) cz [L ----. $+j j 

\ 
(4.11) 

It is clear that or’ J; 0 for ) ./ii # 1 ug” 1 , so that the stream surface S in this case 
coneponds to an isentrope, and the neighborhood of the point Osis either a saddle 

( 1 A I> ]uoo~ ) or a node (1 A I< juoo I) of the family of isentropes with an entropy 

singularity. In order to obtain the particular stream surface So, we must ensure that 

the component n be equal to zero for cp = 0 and cp = X, i. e. we must set 

A z -ugO (4.12) 

The subsequent coefficients of the expansion are obtainable from a system of ordinary 
differential recursion equations with boundary conditions corresponding to the no-leak 

condition at So,. 
Thus, the fact of existence of a symmetric solution (4.12) with a condition on S of 

the same type (4 = 0, w = 0) as on the particular stream surface So, indicates the 

possibility of two types of isentrope configurations in the vicinity of the point Os(Fig.6); 

moreover, the point 0, is not an entropy singularity, since the isentropes do not converge 
to the point O,, but terminate at So, at disctinct points distributed continuously over 

s G:z’ We note that the case A = u,,’ corresponds to So, lying in the plane cp =n / 2. 

6. Thus, in addition to regular stream surfaces coincident with isentropes, conical flows 
can also contain particular conical stream surfaces over which the entropy varies and 
which constitute envelopes of the family of isentropes. In this case the particular stream 
surfaces can merge continuously with the regular surfaces; they likewise admit of a sym- 

metric solution without any entropy singularities either on the surface S or in the field 
of flow. 

The above results suggest the existence of a new diagram of separation-free flow past 
conical bodies (Fig. 7b) different from the diagram proposed by Ferri [l] with its entropy 

singularity at the points of detachment of the streamlines (Fig. 7a). The surface of the 

conical body in the proposed diagram can be partially contiguous with the regular stream 

surface (e. g. the windward and side surfaces of a cone at angle of attack) and partially 

contiguous with the particular stream surface (the leeward portion of the cone in the 
neighborhood of the rear critical point). The entropy is constant on the first part of the 

Fig. 



1004 A. I. toiubinskii 

surface (although the pressure and velocities vary) ; on the second part of the surface the 
pressure remains constant, while the entropy varies continuously from its value at the front 
part of the surface to its value at the rear critical point. It is apparently also possible to 

have still more complex flow diagrams containing several areas of constant and variable 

entropy. 
The constant-entropy areas (i.e. areas of the type SO,) can be associated with frac- 

tional powers of the coordinates in the series and with more complicated patterns of 

joining of the respective areas. For this reason the flow diagram discussed above is not 
exhaustive and must be checked and refined by means of numerical calculations and 

experiments. We note that numerical calculations [S] have been carried out for relativ- 

ely small angles of attack of a cone (smaller than the half vertex angle). This precludes 

their use for verifying the existence of the domain Soz, which must be very small in 

such cases. 

The author is grateful to A. A. Dorodnitsyn, V. Ia. Neiland, V. V. Sychev and A. S. 
Fonarev for discussing the results of the present study and for their valuable comments. 
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